slide1

Alt1040. Noticias acerca de Internet, diseño, música, cine, opiniones, weblogs y medios

Es uno de los weblogs de tecnología más seguidos de la blogosfera hispana.

slide2

Bitelia. Blog de software, internet y servicios web

Software y aplicaciones para mejorar tu vida, guías de uso, trucos, listas, noticias y todo sobre tecnología.

slide3

Xataka. Publicación de noticias sobre gadgets y tecnología.

Últimas tecnologías en electrónica de consumo y novedades tecnológicas en móviles, tablets, informática, etc.

slide4

Wwwhatsnew. Aplicaciones, marketing y noticias en la web.

Servicios que os pueden ser útiles para dibujar, gestionar tareas, hacer amigos, encontrar restaurantes...

slide5

Fayerwayer. Discusiones y opiniones de lo ultimo en tecnología y gadgets

Con secciones dedicadas a Internet, Software o Redes Sociales es un referente a nivel de tecnología en español.

20 de mayo de 2024

Guía práctica de términos de Inteligencia Artificial: un diccionario para principiantes

IA Icon
En el apasionante mundo de la tecnología, la Inteligencia Artificial (AI por sus siglas en inglés) se ha convertido en un tema de conversación cada vez más frecuente. Desde asistentes virtuales que responden a nuestras preguntas hasta vehículos autónomos que navegan por las calles, la IA está transformando la forma en que vivimos, trabajamos e interactuamos con el mundo que nos rodea.

Sin embargo, para muchos, la IA sigue siendo un concepto complejo y lleno de tecnicismos. En este artículo, nos proponemos desmitificar la IA y acercarla a un público más amplio. A través de un glosario completo y detallado, exploraremos los términos clave que definen este campo en constante evolución.


La Inteligencia Artificial no solo está redefiniendo lo posible, sino también reimaginando el futuro de la humanidad. En sus algoritmos, encontramos el potencial para resolver los desafíos más grandes y transformar cada aspecto de nuestra vida.



Inteligencia Artificial


La Ingeligencia Artificial es una rama de la informática que se enfoca en crear máquinas y programas capaces de realizar tareas que normalmente requieren inteligencia humana. Estas tareas incluyen aprender de la experiencia, reconocer patrones, tomar decisiones, resolver problemas y entender el lenguaje natural.

En términos simples, la IA permite que las computadoras y otros dispositivos "piensen" y "aprendan" de manera similar a los seres humanos. Y es posible usando algoritmos y modelos matemáticos que procesan grandes cantidades de datos para encontrar patrones y tomar decisiones basadas en esos datos.

Por ejemplo, cuando usas un asistente virtual como Siri o Google Assistant, estás interactuando con una forma de IA que puede entender tus preguntas y proporcionarte respuestas útiles. Otro ejemplo común es el sistema de recomendaciones de Netflix, que utiliza IA para sugerirte películas y series basadas en tus preferencias y hábitos de visualización.

En resumen, la IA está diseñada para hacer nuestras vidas más fáciles y eficientes al permitir que las máquinas realicen tareas complejas de manera autónoma.

Test de Turing


Es una prueba creada por el científico Alan Turing en 1950 para determinar si una máquina puede exhibir un comportamiento inteligente indistinguible del de un ser humano. En la prueba, una persona interactúa con una máquina y otro ser humano a través de una pantalla. Si la persona no puede distinguir si está conversando con la máquina o con el humano, se dice que la máquina ha pasado el test y es considerada "inteligente".

El test de Turing ha tenido un impacto significativo en el desarrollo de la inteligencia artificial. Aunque hoy existen métodos más avanzados para evaluar y desarrollar IA, el test sigue siendo una piedra angular histórica y conceptual en el campo. Representa el desafío original de crear máquinas que puedan comportarse de manera indistinguible de los humanos, una meta que sigue inspirando y guiando a los investigadores de IA.

Machine Learning


El Machine Learning o Aprendizaje Automático, es una rama de la Inteligencia Artificial que permite a las máquinas aprender y mejorar a partir de la experiencia sin ser explícitamente programadas para ello. En lugar de seguir instrucciones específicas, las máquinas analizan grandes cantidades de datos para encontrar patrones y tomar decisiones por sí mismas.

Modelo


En el ámbito de la Inteligencia Artificial, un modelo es una representación matemática que las máquinas utilizan para tomar decisiones o hacer predicciones. Este modelo se crea mediante el análisis de datos y el aprendizaje de patrones en esos datos.

Por ejemplo, en el Machine Learning, un modelo se entrena utilizando un conjunto de datos de ejemplo. A través de este proceso de entrenamiento, el modelo aprende a reconocer patrones y relaciones dentro de los datos. Una vez entrenado, el modelo puede aplicar lo que ha aprendido para hacer predicciones o tomar decisiones sobre nuevos datos que no ha visto antes.

Imagina que estás entrenando un modelo para reconocer imágenes de gatos. Primero, le muestras muchas imágenes etiquetadas como "gato" o "no gato". El modelo analiza estas imágenes y aprende a identificar características comunes de los gatos. Luego, cuando se le presenta una nueva imagen, puede predecir si la imagen contiene un gato basándose en lo que ha aprendido.

Resumiendo, un modelo en IA es como una fórmula matemática sofisticada que se construye y ajusta a partir de datos para realizar tareas específicas, como clasificación, predicción o reconocimiento.

Deep Learning


El Deep Learning o Aprendizaje Profundo, es un tipo avanzado de Machine Learning que utiliza redes neuronales artificiales con muchas capas (de ahí el término "profundo"). Estas redes imitan la forma en que funciona el cerebro humano para procesar y analizar grandes cantidades de datos de manera muy eficaz.

En Deep Learning, las redes neuronales están organizadas en capas de neuronas artificiales. Cada capa procesa la información y la pasa a la siguiente, permitiendo que el sistema aprenda características complejas y abstracciones a medida que avanza. Ello es especialmente útil para tareas como el reconocimiento de imágenes, la comprensión del lenguaje natural y la traducción automática.

Por ejemplo, en el reconocimiento de imágenes, las primeras capas de una red neuronal profunda podrían aprender a detectar bordes y colores básicos, mientras que las capas más profundas aprenderían a reconocer formas y objetos complejos como rostros o animales.

En resumen, el Deep Learning es una técnica de IA que permite a las máquinas aprender y realizar tareas muy complejas al utilizar estructuras de redes neuronales con muchas capas.

Parámetros


En el campo de la Inteligencia Artificial, y específicamente en el aprendizaje automático y el deep learning, los parámetros son los valores internos que el modelo aprende y ajusta durante el proceso de entrenamiento. Dichos valores determinan cómo la entrada de datos se transforma en una salida deseada.

Por ejemplo, en una red neuronal, los parámetros son los pesos y los sesgos (biases) de las conexiones entre las neuronas. Durante el entrenamiento, el modelo ajusta estos pesos y sesgos para minimizar el error en sus predicciones. A través de un proceso iterativo de ajuste, llamado optimización, el modelo aprende a hacer predicciones más precisas.

Imagina una red neuronal que aprende a reconocer dígitos escritos a mano. Al principio, los parámetros (pesos y sesgos) se inicializan con valores aleatorios. A medida que el modelo procesa ejemplos de entrenamiento (imágenes de dígitos con sus etiquetas correctas), ajusta los parámetros para mejorar su capacidad de reconocer los dígitos correctamente. Finalmente, los parámetros optimizados permiten que la red neuronal clasifique nuevas imágenes de dígitos con alta precisión.

Resumiendo, los parámetros son los componentes ajustables del modelo de IA que se calibran durante el entrenamiento para permitir que el modelo haga predicciones o tome decisiones basadas en los datos.

Red Neuronal Convolucional


Una Red Neuronal Convolucional o CNN por sus siglas en inglés, es un tipo de red neuronal especialmente diseñada para procesar y analizar datos con una estructura de tipo rejilla, como las imágenes. Las CNN son muy efectivas para tareas de visión por computadora, como el reconocimiento de objetos y la clasificación de imágenes.

Las CNN se componen de varias capas especializadas:

  • Capas convolucionales: estas capas aplican filtros (o kernels) a la imagen de entrada para detectar características locales como bordes, texturas y patrones. Cada filtro se desliza sobre la imagen y genera un mapa de características que resalta las áreas donde el filtro detecta la característica específica.
  • Capas de agrupamiento (Pooling): estas capas reducen la dimensión de los mapas de características, manteniendo la información más importante y disminuyendo la cantidad de datos que la red debe procesar. El agrupamiento más común es el max-pooling, que toma el valor máximo en una región del mapa de características.
  • Capas completamente conectadas (Fully Connected): estas capas finales conectan todas las neuronas de la capa anterior con cada neurona de la siguiente capa, similar a las redes neuronales tradicionales. Son responsables de tomar las características extraídas por las capas convolucionales y realizar la clasificación o la predicción final. Por ejemplo, una CNN entrenada para reconocer dígitos escritos a mano recibe una imagen como entrada, la procesa a través de varias capas convolucionales y de agrupamiento para extraer las características relevantes, y finalmente usa capas completamente conectadas para determinar qué dígito se muestra en la imagen.

En resumen, una Red Neuronal Convolucional es una herramienta poderosa en IA diseñada para procesar y analizar imágenes mediante el uso de capas especializadas que detectan y resumen características importantes.

Transformer


Un Transformer es una arquitectura de red neuronal desarrollada para tareas de procesamiento de lenguaje natural (NLP por sus siglas en inglés) que ha revolucionado el campo de la Inteligencia Artificial. Fue introducida por primera vez en el artículo "Attention is All You Need" en 2017.

A diferencia de las redes neuronales recurrentes (RNN) o las redes neuronales convolucionales (CNN), que dependen de la secuencia de entrada, los Transformers se basan en un mecanismo de atención para procesar las entradas en paralelo, lo que los hace más eficientes y efectivos para tareas de secuencia larga, como la traducción de idiomas, la generación de texto y la respuesta a preguntas.

La arquitectura de Transformer se compone de bloques de atención y capas de redes neuronales completamente conectadas, llamadas capas de feedforward. Los bloques de atención permiten que la red se centre en partes específicas de la secuencia de entrada, identificando relaciones y dependencias entre las palabras. Todo ello hace psoible que el Transformer capture información relevante de manera más efectiva en comparación con otros modelos.

El Transformer ha demostrado ser altamente escalable y eficiente, lo que lo hace adecuado para una variedad de tareas en NLP. Ejemplos de implementaciones exitosas de Transformers incluyen BERT (Bidirectional Encoder Representations from Transformers), GPT (Generative Pre-trained Transformer), y T5 (Text-To-Text Transfer Transformer), entre otros.

En resumen, un Transformer es una arquitectura de red neuronal revolucionaria que utiliza mecanismos de atención para procesar secuencias de entrada en tareas de procesamiento de lenguaje natural.

N.L.P.


El Procesamiento de Lenguaje Natural (NLP) es una rama de la Inteligencia Artificial que se enfoca en la interacción entre las computadoras y el lenguaje humano. Su objetivo es permitir que las máquinas comprendan, interpretan y generen lenguaje humano de manera similar a como lo hacen los humanos.

Las aplicaciones de NLP abarcan una amplia gama de tareas, incluyendo:

  • Análisis de sentimientos: determinar la actitud o emoción expresada en un texto, como positiva, negativa o neutral.
  • Reconocimiento de entidades: identificar y clasificar elementos específicos en el texto, como nombres de personas, lugares o fechas.
  • Traducción automática: convertir texto de un idioma a otro de manera automática y precisa.
  • Resumen automático: generar un resumen conciso de un documento o artículo largo.
  • Generación de texto: crear texto nuevo y coherente basado en un conjunto de datos de entrada.

El NLP utiliza una combinación de técnicas de aprendizaje automático, procesamiento de señales digitales y lingüística computacional para lograr sus objetivos. Estas técnicas incluyen modelos de lenguaje, análisis sintáctico, semántica computacional y mucho más.

Con el avance de los modelos de NLP basados en Transformers, como BERT y GPT, la capacidad de las máquinas para comprender y generar lenguaje humano ha alcanzado niveles sin precedentes, abriendo nuevas posibilidades en áreas como la asistencia virtual, la atención médica, la educación y más.

Resumiendo, el Procesamiento de Lenguaje Natural (NLP) es una disciplina clave en la Inteligencia Artificial que permite a las máquinas comprender y trabajar con el lenguaje humano de manera efectiva.

IA Generativa


La Inteligencia Artificial Generativa se refiere a un tipo de IA que se utiliza para crear datos nuevos y originales que se asemejan a los datos de entrenamiento. A diferencia de otros tipos de IA que se centran en la clasificación o predicción, las IA generativas están diseñadas para generar contenido nuevo que no existía previamente.

Estas IA son capaces de producir imágenes, música, texto y otros tipos de contenido creativo. Utilizan modelos de aprendizaje automático, como las Redes Neuronales Generativas Adversariales (GANs) y los Transformers, para aprender patrones complejos en los datos de entrenamiento y luego generar nuevas muestras que siguen estos patrones.

Por ejemplo, una IA generativa entrenada en imágenes de rostros humanos podría generar retratos realistas de personas que nunca han existido. O una IA generativa en el ámbito musical podría componer nuevas piezas musicales en el estilo de un compositor específico.

Las IA generativas tienen una amplia gama de aplicaciones, desde la creación de arte y entretenimiento hasta la generación de datos sintéticos para entrenar otros modelos de IA. Sin embargo, también plantean desafíos éticos y sociales, especialmente en términos de la autenticidad y el uso responsable de los datos generados.

En resumen, la IA generativa es una rama emocionante de la inteligencia artificial que se centra en la creación de contenido nuevo y original, impulsando la creatividad y la innovación en diversas áreas.

L.L.M.


Un Large Language Model (LLM) o Modelo de Lenguaje Grande, es un tipo de modelo de Inteligencia Artificial diseñado para comprender y generar texto de manera avanzada y está entrenado en enormes cantidades de datos de texto para aprender patrones y estructuras del lenguaje humano.

Los LLMs son capaces de realizar una variedad de tareas relacionadas con el lenguaje natural, como la generación de texto, la traducción automática, la respuesta a preguntas, la generación de resúmenes, entre otras. Utilizan técnicas avanzadas de aprendizaje automático, como los Transformers, que les permiten capturar relaciones complejas y contextos largos en el texto.

Un ejemplo destacado de LLM es GPT (Generative Pre-trained Transformer), desarrollado por OpenAI. GPT y sus sucesores han demostrado una notable capacidad para generar texto coherente y relevante en una amplia variedad de contextos.

Los LLMs pueden ser pre-entrenados en grandes conjuntos de datos de texto no estructurado, como páginas web, libros, artículos de noticias, entre otros, y luego afinados para tareas específicas con conjuntos de datos más pequeños y específicos.

Tienen aplicaciones en campos como la asistencia virtual, la generación de contenido, la comprensión del lenguaje y mucho más. Sin embargo, también plantean desafíos éticos y sociales en términos de su potencial para generar contenido engañoso o discriminatorio.

En resumen, un Large Language Model (LLM) es un tipo de modelo de IA altamente avanzado que comprende y genera texto de manera sofisticada, con una amplia gama de aplicaciones en el procesamiento de lenguaje natural y más allá.

G.P.T.


Generative Pre-trained Transformer (GPT) es una familia de modelos de lenguaje desarrollada por OpenAI basados en la arquitectura Transformer y están diseñados para comprender y generar texto de manera avanzada.

GPT utiliza un enfoque de aprendizaje no supervisado para pre-entrenar el modelo en grandes cantidades de texto no etiquetado, como libros, artículos de noticias y páginas web. Durante este pre-entrenamiento, el modelo aprende la estructura y los patrones del lenguaje humano, capturando relaciones semánticas y sintácticas complejas.

Una de las características clave de GPT es su capacidad generativa. Una vez pre-entrenado, el modelo puede generar texto coherente y relevante en una variedad de contextos y estilos, como respuesta a preguntas, continuación de textos, generación de historias y mucho más.

Los modelos GPT tienen una amplia gama de aplicaciones, incluyendo asistentes virtuales, generación de contenido, traducción automática, resumen automático y más. Sin embargo, también plantean desafíos en términos de ética y seguridad, especialmente en relación con el potencial de generar contenido engañoso o sesgado.

En resumen, GPT (Generative Pre-trained Transformer) es una familia de modelos de lenguaje avanzados desarrollados por OpenAI, diseñados para comprender y generar texto de manera sofisticada en una amplia variedad de contextos.

Chatbot


Un Chatbot es un programa de computadora diseñado para interactuar con usuarios a través de conversaciones de texto o voz. Funciona mediante el uso de inteligencia artificial para comprender las preguntas y comentarios de los usuarios, y responder de manera adecuada y relevante.

Imagina un asistente virtual en tu teléfono o en una página web que te ayuda a encontrar información, responder preguntas comunes o realizar tareas específicas, como hacer una reserva o realizar un pedido. Eso es un Chatbot. Pueden ser simples y responder preguntas básicas o más sofisticados y simular conversaciones humanas más complejas.

Prompt


Un "Prompt" es una instrucción o estímulo dado a un modelo de inteligencia artificial para guiar su respuesta o generación de contenido. Es como una sugerencia o indicación que se proporciona al modelo para influir en la dirección que tomará su salida.

Por ejemplo, al utilizar un modelo de lenguaje como GPT-3, se le puede proporcionar un prompt en forma de texto para solicitar una respuesta específica. Este prompt puede ser una pregunta, una frase incompleta o incluso un fragmento de texto que el modelo debe completar.

Multimodal


El término "multimodal" se refiere a la capacidad de un sistema o modelo de inteligencia artificial para comprender y procesar información proveniente de múltiples modalidades sensoriales, como texto, imágenes, voz y otros tipos de datos.

Por ejemplo, un sistema multimodal puede ser capaz de entender una pregunta formulada en texto y responder con una combinación de texto e imágenes. También puede traducir un texto a otro idioma y generar una descripción visual del contenido.

Los sistemas multimodales son especialmente útiles en aplicaciones como la comprensión del lenguaje natural, la visión por computadora y la interacción humano-máquina, ya que permiten una comunicación más rica y natural.

A.G.I.


La Inteligencia Artificial General o AGI por sus siglas en inglés, se refiere a un tipo de inteligencia artificial que posee la capacidad de comprender, aprender, razonar y actuar en una amplia variedad de tareas de manera similar a los seres humanos.

A diferencia de la Inteligencia Artificial Específica (IAE o Narrow AI), que se especializa en tareas específicas, como el reconocimiento de imágenes o la traducción de idiomas, la AGI aspira a tener un nivel de inteligencia comparable al humano y la capacidad de realizar una amplia gama de tareas cognitivas de manera flexible y adaptativa.

La AGI, en teoría, sería capaz de aprender y aplicar conocimientos en contextos diversos, resolver problemas novedosos y adaptarse a nuevas situaciones de manera inteligente, similar a cómo lo hacen los seres humanos. Sin embargo, el desarrollo de una AGI verdadera sigue siendo un objetivo futuro y desafiante en el campo de la inteligencia artificial.

Se considera que la creación de una AGI tendría un impacto significativo en la sociedad y la civilización, tanto en términos de oportunidades como de desafíos éticos y de seguridad.

Singularidad


La "Singularidad" es un término que se refiere a un punto futuro hipotético en el cual la inteligencia artificial alcanzaría un nivel superior al humano y conduciría a cambios rápidos y disruptivos en la sociedad.

Según la teoría de la Singularidad, una vez que la inteligencia artificial alcance este nivel de superinteligencia, sería capaz de mejorar y replicarse a sí misma de manera exponencial, lo que llevaría a un rápido progreso tecnológico y a cambios drásticos en todas las áreas de la vida humana.

Algunas visiones de la Singularidad sugieren que podría traer beneficios significativos, como la eliminación de enfermedades, la resolución de problemas globales y el acceso a niveles sin precedentes de conocimiento y bienestar. Sin embargo, también plantea preocupaciones sobre el control y la seguridad de la IA, así como sobre el impacto en el empleo, la sociedad y la supervivencia humana.

La Singularidad es un tema de debate en la comunidad científica y filosófica, con diferentes puntos de vista sobre su probabilidad y consecuencias.




23 de abril de 2024

Los agentes LLM pueden explotar autónomamente vulnerabilidades de un día

Virus Icon
En los úlitmos años, los Modelos de Lenguaje a Gran Escala (Large Language Model o LLM) han experimentado mejoras espectaculares en su rendimiento, llegando incluso a superar el desempeño humano en numerosas evaluaciones. Este progreso ha generado un considerable interés en estos agentes, que pueden llegar a tomar acciones a través de herramientas, auto-reflexionar e incluso comprender documentos, lo que les permite actuar como ingenieros de software y contribuir en descubrimientos científicos.


Se sabe poco sobre la capacidad de los agentes basados en modelos de lenguaje en el ámbito de la ciberseguridad. La mayoría de los estudios recientes se han enfocado en el paradigma de "mejora humana", donde los LLM se emplean como chatbots para asistir a humanos, o en discusiones teóricas sobre estrategias ofensivas y defensivas.

Aunque algunos trabajos destacan que los agentes LLM pueden ser capaces de infiltrarse en sitios web de prueba o realizar ejercicios de tipo "capture de flag" de manera autónoma, estas actividades no reflejan implementaciones del mundo real.

Sin embargo, el trabajo publicado en el archivo en línea para las prepublicaciones de artículos científicos ArXiv (https://arxiv.org/html/2404.08144v2), demuestra que los agentes LLM pueden explotar de manera autónoma vulnerabilidades de un día en sistemas del mundo real.

Las "vulnerabilidades de un día" o "one-day vulnerabilities" son vulnerabilidades que se han divulgado pero no se han corregido en un sistema. En muchas implementaciones del mundo real, los parches de seguridad no se aplican de inmediato, exponiendo el entorno a estas vulnerabilidades de un día. Los escáneres de vulnerabilidades de código abierto no logran encontrar algunas de estas vulnerabilidades de un día, pero los agentes LLM son capaces de explotarlas. Además, muchas de las divulgaciones de vulnerabilidades no proporcionan instrucciones paso a paso sobre cómo explotar la vulnerabilidad, lo que significa que un atacante debe reproducir los pasos por sí mismo.


Vista posterior del peligroso equipo de piratas informáticos que trabaja en un nuevo malware.



Para mostrar esto, se recopilaron un conjunto de datos de 15 vulnerabilidades de un día, incluidas aquellas categorizadas como de gravedad crítica en la descripción del CVE (Common Vulnerabilities and Exposures).

Estos CVEs incluyen sitios web del mundo real (CVE-2024-24041), software de gestión de contenedores (CVE-2024-21626) y paquetes Python vulnerables (CVE-2024-28859).

Muchos CVEs son para software de código cerrado o software propietario, que no es posible reproducir ya que los CVEs generalmente se divulgan públicamente después de que el proveedor parchea el software. Para crear un punto de referencia, el estudio se ha centrado en el software de código abierto.

Más allá del software de código cerrado, muchas de las vulnerabilidades del código abierto son difíciles de reproducir ya que incluyen dependencias no especificadas, contenedores docker rotos o descripciones poco detalladas en los CVEs.

Cuando se proporciona la descripción del CVE, GPT-4 es capaz de explotar el 87% de estas vulnerabilidades en comparación con el 0% para todos los demás modelos probados (GPT-3.5, LLMs de código abierto) y escáneres de vulnerabilidades de código abierto (ZAP y Metasploit).

El agente GPT-4 demostró un rendimiento muy superior al de todos los demás modelos y escáneres de vulnerabilidades de código abierto, logrando una tasa de éxito de 5 de 5 en todas las vulnerabilidades y un coste en dólares significativamente menor en comparación con otros modelos de lenguaje y escáneres de vulnerabilidades de código abierto (con una tasa de éxito general promedio del 40%, requeriría $8,80 por exploit).

Para hacerlo, simplemente se le dió al agente acceso a las herramientas, la descripción CVE y se utilizó el marco del agente ReAct. El agente tenía un total de 91 líneas de código, lo que demuestra la simplicidad de realizar este tipo de exploits.

Sin la descripción CVE, la tasa de éxito de GPT-4 cae al 7%, evidenciando que el agente se encuentra mucho más capacitado para explotar vulnerabilidades que para encontrarlas.

Reflexiones


En este trabajo, se ha demostrado que los agentes LLM pueden explotar de manera autónoma vulnerabilidades de un día en sistemas del mundo real. El agente GPT-4 logró un rendimiento significativamente mejor que otros modelos de lenguaje y escáneres de vulnerabilidades de código abierto. Estos hallazgos tienen implicaciones importantes para la ciberseguridad y plantean preguntas sobre la implementación generalizada de agentes LLM altamente capaces en entornos del mundo real.

Los resultados muestran que los agentes LLM pueden utilizarse para piratear sistemas del mundo real. Al igual que muchas tecnologías, estos resultados pueden emplearse de manera maliciosa e ilegal. Sin embargo, como ocurre con gran parte de la investigación en seguridad informática y seguridad de aprendizaje automático, creemos que es importante investigar estos problemas en un entorno académico. En este trabajo, se han tomado precauciones para garantizar que solo se usaron entornos aislados para evitar daños.





11 de abril de 2024

Cómo optimizar tu infraestructura de TI: una guía esencial sobre Windows Server

Windows Server Icon
En el mundo de la tecnología, donde el "404 Not Found" es más temido que encontrarse sin café a primera hora de la mañana, elegir el sistema operativo de tu servidor puede parecer una tarea tan compleja como explicarle a tu madre cómo usar Facebook.


Piensa en Windows Server como el superhéroe anónimo de la infraestructura de TI. No lleva capa, pero con su seguridad de acero y su estabilidad inquebrantable, podría darle una lección o dos a Superman sobre cómo mantener las cosas bajo control. Y cuando se trata de compatibilidad, es como el amigo que todos quieren en su fiesta: se lleva bien con todos tus aplicaciones y herramientas, sin dramas.

Pero no temas, porque existe un aliado digital que transmite confianza y seguridad en soluciones de software originales, Revolution Soft, cuyos especialistas entienden la importancia de contar con una infraestructura de TI optimizada, ofreciendo soluciones a medida que incluyen licencias de Windows Server a precios amigables.

Así que, mientras te embarcas en la noble búsqueda de optimizar tu infraestructura de TI, recuerda: elegir Windows Server no tiene que ser como intentar resolver un cubo Rubik en la oscuridad. Con un poco de orientación de expertos y quizás un café (o dos), encontrarás la versión y licencia perfecta más rápido de lo que puedes decir "¿Has probado apagarlo y volverlo a encender?".

Pero ¿por qué elegir Windows Server y cómo asegurarte de seleccionar la licencia adecuada para tu negocio?. Vamos a sumergirnos en los detalles.

¿Por qué Windows Server?


En el complejo tablero de ajedrez que es la infraestructura de TI moderna, elegir el sistema operativo de servidor correcto es como elegir a tu rey: es fundamental para tu defensa y determina el flujo de tus operaciones. Aquí es donde Windows Server no solo entra en juego sino que se corona como líder. Vamos a profundizar en las razones detrás de su dominio en términos de seguridad, estabilidad y compatibilidad.


Expert upgrading server hub security to protect information access, making sure virus protection software is updated so that hackers trying to penetrate systems are rebuffed


Seguridad: tu fortaleza digital


En la era digital, la seguridad no es un lujo; es una necesidad. Los ciberataques se están volviendo más sofisticados día tras día, poniendo a prueba las defensas de las infraestructuras de TI de empresas de todos los tamaños. Windows Server destaca por su enfoque proactivo hacia la seguridad, ofreciendo múltiples capas de protección diseñadas para repeler ataques, proteger datos y asegurar aplicaciones y redes.

  • Defensa avanzada contra amenazas: Windows Server integra tecnologías avanzadas como Windows Defender para una protección en tiempo real contra software malicioso, phishing y otras amenazas cibernéticas.
  • Control de acceso y gestión de identidades: proporciona herramientas robustas para el control de acceso basado en roles, asegurando que solo los usuarios autorizados puedan acceder a información sensible.
  • Cifrado de datos: con características como BitLocker, Windows Server permite a las empresas cifrar datos en reposo y en tránsito, lo que es esencial para la protección contra brechas de datos.

Estabilidad: el pilar de tu operación


La estabilidad es el corazón de cualquier operación de TI exitosa. Un sistema que se cae frecuentemente no solo es una molestia; puede significar pérdidas significativas en productividad y, en consecuencia, en ingresos. Windows Server, conocido por su robustez, garantiza una operación fluida y continua de tus aplicaciones críticas de negocio.

  • Mínimo tiempo de inactividad: gracias a su arquitectura sólida y a las actualizaciones regulares, Windows Server mantiene el tiempo de inactividad al mínimo, lo que permite a las empresas operar sin interrupciones.
  • Recuperación ante desastres (Disaster Recovery): con herramientas integradas para la recuperación ante desastres y copias de seguridad, Windows Server ayuda a asegurar que tus datos y operaciones puedan ser restaurados rápidamente después de cualquier incidente.

Compatibilidad: la clave para la innovación


La compatibilidad en el ámbito de TI significa menos dolores de cabeza y más innovación. Windows Server brilla en este aspecto, ofreciendo un amplio soporte para una variedad de aplicaciones, herramientas y plataformas, lo que permite a las empresas utilizar las soluciones que necesitan para crecer y evolucionar.

  • Soporte ampliado para aplicaciones: desde aplicaciones heredadas hasta las más modernas soluciones basadas en la nube, Windows Server soporta un vasto ecosistema de aplicaciones, permitiendo una integración fluida con tu infraestructura existente.
  • Facilidad de uso y gestión: con una interfaz familiar y herramientas de gestión intuitivas, Windows Server facilita la administración del sistema, permitiendo a los equipos de TI concentrarse en tareas más estratégicas.

Satisfacción de necesidades específicas: la versatilidad de Windows Server


Cada organización es única en sus desafíos y requisitos tecnológicos, Windows Server emerge como un camaleón en el mundo de los sistemas operativos de servidor. Su capacidad para adaptarse y satisfacer las necesidades específicas de una amplia gama de segmentos de clientes lo convierte en la solución ideal para prácticamente cualquier tipo de negocio.

Veamos cómo Windows Server se alinea perfectamente con diferentes necesidades empresariales, desde pequeñas empresas hasta consultorías informáticas.

✓ Pequeñas empresas: crecimiento sin complicaciones


Para las pequeñas empresas, la tecnología debe ser una herramienta para el crecimiento, no una fuente de complejidad. Windows Server, con su facilidad de uso y administración, permite a estas empresas centrarse en lo que mejor saben hacer: atender a sus clientes y expandir su negocio. Gracias a las ediciones Essentials y Foundation, diseñadas específicamente para negocios con requisitos de TI limitados o sin personal de TI dedicado, Windows Server ofrece una solución asequible y fácil de mantener que crece junto con la empresa.

✓ Tiendas de informática: soporte y flexibilidad


Las tiendas de informática enfrentan la presión constante de mantenerse actualizadas con la última tecnología y ofrecer soluciones confiables a sus clientes. Windows Server les proporciona una base sólida sobre la cual pueden construir servicios de valor añadido, desde hosting hasta servicios de mantenimiento y reparación avanzados. La compatibilidad extensa con una variedad de software y hardware significa que pueden satisfacer las necesidades de un amplio espectro de clientes sin problemas de interoperabilidad.

✓ Consultorías informáticas: soluciones de alto nivel


Las consultorías informáticas, que sirven como el brazo tecnológico de sus clientes, requieren de un sistema operativo de servidor que pueda manejar demandas complejas y ofrecer un rendimiento, seguridad y estabilidad inigualables. Windows Server, especialmente en sus ediciones más robustas como Standard y Datacenter, proporciona las herramientas y capacidades necesarias para implementar soluciones avanzadas, desde virtualización hasta administración de identidades y accesos, permitiéndoles ofrecer servicios de consultoría de primer nivel.

✓ PYMES: flexibilidad y escalabilidad


Las pequeñas y medianas empresas (PYMES) necesitan soluciones tecnológicas que puedan adaptarse rápidamente a los cambios y crecer con ellas. Windows Server ofrece esa flexibilidad y escalabilidad, con características que soportan desde simples configuraciones de archivo y print server hasta aplicaciones empresariales complejas y bases de datos. Este escenario permite comenzar pequeños pero planear a lo grande, asegurando que su infraestructura de TI pueda evolucionar según lo hagan sus necesidades comerciales.

✓ Instituciones educativas: acceso y colaboración


Las instituciones educativas enfrentan el desafío único de proporcionar acceso a recursos y herramientas a un gran número de usuarios -estudiantes, profesores, y personal- a menudo con un presupuesto limitado. Windows Server ayuda a superar estos desafíos mediante la simplificación de la gestión de accesos, el soporte para entornos de aprendizaje virtuales y la facilitación de la colaboración y el intercambio de recursos. Con opciones como Active Directory y Hyper-V, las instituciones pueden crear un entorno tecnológico que respalde sus misiones educativas de manera efectiva y segura.

Selección de la licencia adecuada


Windows Server 2019 vs. 2022: cada versión de Windows Server tiene sus peculiaridades y está orientada a satisfacer diferentes necesidades. Por ejemplo, Windows Server 2019 es ideal para empresas que buscan innovar con contenedores y microservicios, mientras que Windows Server 2022 ofrece mejoras significativas en seguridad y rendimiento para quienes buscan estar a la vanguardia de las últimas innovaciones tecnológicas.

Consejos para elegir la licencia correcta: considera el tamaño de tu negocio, tus necesidades de virtualización y tus requisitos de seguridad antes de tomar una decisión. En Revolution Soft ofrecen una amplia gama de licencias para Windows Server, permitiéndote elegir la que mejor se adapte a tus necesidades específicas.

Caso de uso: implementación en diferentes escenarios


Cada tipo de cliente tiene su propio caso de uso único para Windows Server.

Las tiendas de informática pueden beneficiarse de su estabilidad y compatibilidad para ofrecer servicios de mantenimiento más eficientes.

Las consultorías informáticas, por otro lado, pueden aprovechar las capacidades avanzadas de Windows Server para brindar soluciones de TI de alto nivel a sus clientes empresariales.

Las PYMES y las instituciones educativas encontrarán en Windows Server una plataforma confiable y segura para sus operaciones diarias.

Conclusión


Recuerda, elegir el sistema operativo de tu servidor no tiene por qué ser como intentar entender a alguien que habla en código binario.

Con la guía correcta y el socio adecuado, puedes tomar la decisión perfecta sin necesidad de convertirte en un experto overnight. ¡Y si todo falla, recuerda que siempre puedes apagarlo y volverlo a encender!





7 de abril de 2024

Microsoft Copilot: guía definitiva para aprovechar al máximo la IA y potenciar tu productividad

Microsoft Copilot Icon
En este mundo ajetreado y veloz en el que vivimos hoy en día, cada vez más orientado hacia la eficiencia y la innovación tecnológica, las herramientas de Inteligencia Artificial se están convirtiendo en aliados necesarios para multitud de empresas e individuos.


Creo que es pertinente señalar que estas herramientas están cambiando la forma en la que trabajamos e interactuamos con la tecnología, dando lugar a un nuevo modelo de trabajo, y en esto, hay una empresa que siempre ha destacado con sus soluciones: Microsoft.

Como Microsoft obviamente no quiere perderse esta revolución que estamos presenciando, ha creado su propio asistente impulsado por Inteligencia Artificial: Microsoft Copilot, que "promete" revolucionar nuestra forma de trabajar.

¿Qué es Microsoft Copilot?


Microsoft Copilot es una herramienta de inteligencia artificial diseñada para mejorar la productividad y facilitar el trabajo dentro del ecosistema de aplicaciones y servicios de Microsoft.

A través de una robusta integración con Microsoft 365, esta herramienta nos permite comprender, predecir y ejecutar tareas basadas en lenguaje natural, ofreciendo a los usuarios interactuar con sus aplicaciones de una manera que hace unos años nos habría parecido ciencia ficción. Desde tareas como la generación de borradores de correo hasta la creación de documentos o análisis de datos, Copilot se presenta como un asistente personal que promete ampliar nuestras capacidades y enriquecer la creatividad y productividad.

Utilizando la potente infraestructura en la nube que Microsoft viene desarrollando estos últimos años, este sistema de IA brinda una experiencia de usuario contextualizada y personalizada. Su capacidad para aprender de las interacciones hace que pueda ofrecer recomendaciones y acciones ajustadas a las necesidades muy específicas que tengamos.


Una nueva forma de trabajar
Copilot - Una nueva forma de trabajar



Principales características de Microsoft Copilot


✓ Comprensión del lenguaje natural


La comprensión del lenguaje natural es una de las funcionalidades más destacadas en cualquier herramienta de inteligencia artificial y así es también en Microsoft Copilot. Esto permite al asistente entender consultas, instrucciones y comandos escritos en lenguaje coloquial.

Lo potente y lo que más me impresiona de esta tecnología es su habilidad para procesar y comprender no solo palabras, sino también el contexto y las intenciones subyacentes de las comunicaciones.

✓ Automatización de tareas


La automatización de tareas es otra de las características fundamentales que promete Microsoft Copilot, aunque de momento esta parte está poco evolucionada.

La idea aquí es lograr que Copilot pueda realizar ciertas tareas y procesos de manera automatizada, para que podamos ahorrar tiempo y esfuerzo, pero de momento, necesitamos de aplicaciones como Power Automate para automatizar nuestros procesos.

✓ Personalización y aprendizaje


Microsoft Copilot tiene que ser una herramienta dinámica. Ha sido pensada y diseñada para:

  • Que aprenda basándose en el uso: a medida que los usuarios interactúan con Copilot, este recopila información sobre sus preferencias y patrones de trabajo, permitiendo que el sistema ajuste y refine sus respuestas.

  • Que sea personalizada: el nivel de personalización que ofrece Copilot se adapta a los comandos y solicitudes específicas, y también puede anticipar las necesidades del usuario basándose en comportamientos anteriores.

  • Que mejore con la retroalimentación: Copilot está pensado para mejorar cuando un usuario corrige o modifica sus acciones. La posibilidad de darle feedback sobre sus respuestas hace que pueda aprender y mejorar continuamente.

✓ Integración con M365


La integración de Microsoft Copilot con todo el ecosistema de aplicaciones es algo crucial en la estrategia que se ha marcado Microsoft.

Copilot ya está integrado con las clásicas aplicaciones de Microsoft 365 como Teams, Word, Excel, PowerPoint y Outlook. Esta integración facilita la interacción con estas herramientas de forma "amigable" e intuitiva, sin ningún cambio importante en la forma de trabajo habitual.

Sin embargo, la integración de Copilot va más allá y se extiende a otras aplicaciones como pueden ser las que componen la Power Platform, donde ya podemos usar a este asistente en Power BI, Power Apps, Power Automate o Copilot Studio.

✓ Beneficios de usar Microsoft Copilot en tu empresa


Son varios los beneficios que podemos extraer de implementar un sistema como Copilot en nuestras organizaciones, veamos los más relevantes:

  • Maximización de la productividad: Copilot mejora la eficiencia de una empresa al asumir esas tareas susceptibles de ser automatizadas. Esto se traduce en una redistribución de las horas laborales hacia el trabajo intelectual y creativo.

  • Mayor agilidad en la toma de decisiones: al integrar Copilot, las empresas obtienen un tremendo aliado para toda la parte analítica. Permite sintetizar información de múltiples fuentes y proponer acciones concretas, lo cual es óptimo en escenarios que precisen de rapidez y precisión.

  • Innovación continua: Copilot no solo mejora lo que ya existe, sino que también inspira nuevas formas de hacer y actuar. Al liberarnos de esas tareas mecánicas, cualquier organización pueden invertir más en investigación y desarrollo.

  • Reducción de costes: la eficiencia impulsada por Copilot puede llevar a una muy significativa reducción de costes. Esto, sumado a la automatización de tareas, disminuye la dependencia de recursos adicionales para la gestión de datos y ciertas tareas antes hechas manualmente.

  • Formación y desarrollo: Copilot también puede actuar como una herramienta que impulsa la formación y adecuación a procedimientos empresariales. Resulta muy útil para guiar a empleados a través de procedimientos complejos y ayudando en la adopción de nuevas tecnologías o procesos.

Casos de uso con Microsoft Copilot


✓ Gestión de correos electrónicos


La gestión de nuestro correo electrónico es un elemento esencial para mejorar la productividad en nuestro trabajo, puesto que pasamos muchas horas haciendo todo tipo de tareas con el correo.

Con la habilidad que tiene Copilot de entender el contexto y el contenido de los correos, puede crear respuestas a las consultas recibidas, basándose en las comunicaciones previas y en la información que tiene disponible.

Algunos ejemplos buenos de lo que Copilot puede hacer en Outlook, ordenado de lo que más me gusta a lo que menos:

- Resumir y sintetizar largas cadenas de correos electrónicos.
- Ponerte al día buscando y mostrando puntos clave en los últimos correos.
- Afinar el tono/ortografía de un correo escrito por uno mismo.
- Generar borradores desde 0 para responder a correos.


Copilot Email
Copilot - Gestión de correos electrónicos



✓ Análisis de datos en Excel


En el núcleo de cualquier empresa se encuentra la necesidad de entender y aplicar los datos de una manera efectiva y en eso Excel tiene mucho que decir, y más ahora que Copilot nos facilita esta labor.

Microsoft Copilot nos va a permitir explorar grandes conjuntos de datos, identificar y aplicar el análisis adecuado, y presentar los resultados en formatos comprensibles y listos para ser compartidos, como tablas dinámicas o gráficos intuitivos.

Copilot también es capaz de reconocer patrones y correlaciones que quizás a nosotros nos pasarían desapercibidas, además de proponer insights que pueden aportar mucho valor.

De momento solo funciona con datos en formato tabla de Excel pero seguro que sus capacidades seguirán mejorando en el futuro.


Excel con datos detallados de una telemetría de F1
Copilot - Análisis detallado de datos en Excel


✓ Creación de contenido en Word


Microsoft Copilot está redefiniendo la creación de contenido en hojas de Word, una herramienta fundamental para la comunicación y documentación de cualquier actividad.

Con Copilot en Word, el usuario puede dictar instrucciones simples o describir en lenguaje natural lo que desean comunicar, y la herramienta se encargará de plasmar esas ideas en texto bien estructurado y articulado.

Otra funcionalidad muy chula de Copilot en Word es la capacidad que tiene de extraer información relevante de otros documentos o bases de datos conectadas, para luego insertar automáticamente los datos pertinentes en el documento actual con el que estemos trabajando. Esto es particularmente útil para la redacción de informes técnicos, propuestas de proyectos o documentos legales, donde la claridad y la precisión son realmente importantes.


Copilot Word
Copilot - Interfaz de usuario para generar texto


Aunque esta generación de contenido en Word ya es buena de por sí, está muy lejos de ser perfecta y siempre conviene retocarla y afinarla a nuestro gusto y estilo.


✓ Presentaciones dinámicas en PowerPoint


La creación de presentaciones atractivas en PowerPoint podemos decir que va a alcanzar una nueva dimensión con Microsoft Copilot, ya que nos va a ahorrar muchísimo tiempo en la creación de estas presentaciones.

Copilot sobresale aquí porque ofrece sugerencias de diseño basadas en el contenido del texto, lo que permite a cualquier usuario centrarse en el mensaje mientras deja el aspecto visual en manos de la IA. Esto asegura que cada diapositiva sea atractiva y coherente con el tema general de la presentación.

Más allá de lo visual, Copilot también puede asistir en la integración de datos relevantes, extrayendo cifras y estadísticas de documentos y bases de datos para incluirlas directamente en la presentación.

Imagen

Al igual que el Copilot en Word, las presentaciones que genera Copilot están lejos de ser perfectas, pero nos pueden ahorrar un tiempo muy valioso, dándonos una base muy sólida para empezar.

Cómo empezar a usar Microsoft Copilot


Si estás dispuesto a empezar a usar Microsoft Copilot, lo primero que tienes que decidir es qué versión vas a utilizar. Básicamente tienes 2 opciones: la versión Pro, diseñada principalmente para uso personal y hogares, y la versión 365, enfocada a satisfacer las necesidades de las empresas.

Con la versión Pro de Copilot, disfrutarás de una experiencia personalizada y mejorada, que incluye características avanzadas como rendimiento acelerado y acceso prioritario a las últimas actualizaciones de la inteligencia artificial que alimenta la herramienta. Esta versión es ideal si buscas impulsar tu eficiencia en tareas individuales o algún proyecto personal. Puede ser integrada con tus aplicaciones de Microsoft 365 en la web y, con una suscripción adicional, en las aplicaciones de escritorio también.

Por otro lado, la versión 365 de Copilot está diseñada para integrarse a la perfección con todo tu entorno empresarial. Ofrece herramientas colaborativas y capacidades ampliadas que son muy prácticas para el ámbito corporativo. Esta versión es la adecuada si buscas aprovechar la IA para mejorar la productividad en tu organización, facilitar la colaboración en equipo y obtener buenos insights.

Una vez que hayas elegido y te hayas suscrito a tu Copilot, es crucial aprovechar al máximo todas sus capacidades. Microsoft proporciona una extensa documentación para sus usuarios, con guías paso a paso, mejores prácticas y consejos para optimizar el despliegue y uso de Copilot en tu entorno.

Un buen punto de partida es la página de recursos y aprendizaje de Microsoft Copilot donde encontrarás artículos y tutoriales que te ayudarán a familiarizarte con las funciones de Copilot y a integrarlas eficazmente en tu flujo de trabajo diario.

Estos recursos están diseñados para que puedas comenzar, y también para asegurarse de que estés utilizando Copilot de la manera más eficiente y productiva posible.

Preguntas Frecuentes sobre Microsoft Copilot


✓ ¿Qué tipo de tareas puede realizar Microsoft Copilot?


Microsoft Copilot es capaz de asistir en una diversidad de tareas, abarcando desde la redacción y optimización de correos electrónicos hasta la generación de documentos, análisis avanzados de datos y la creación de presentaciones. Gracias a su integración con Microsoft 365, Copilot facilita una colaboración más fluida entre aplicaciones clave como Outlook, Teams, Word, Excel y PowerPoint. Copilot también está disponible en otras aplicaciones de la Power Platform.

✓ ¿Cómo garantiza Microsoft la privacidad y seguridad en Copilot?


Microsoft prioriza la seguridad y la privacidad en todos sus productos. Copilot garantiza la protección de datos mediante protocolos de cifrado, autenticación y cumplimiento de normativas internacionales. Esto asegura que la información manejada por Copilot se procese de manera segura, respetando la privacidad del usuario y alineándose con las expectativas de seguridad empresarial más exigentes. Para más info, puedes ver Datos, privacidad y seguridad para Microsoft Copilot para Microsoft 365 | Microsoft Learn.

✓ ¿Es necesario tener conocimientos avanzados de IA para usar Copilot?


Usar Microsoft Copilot no requiere de conocimientos avanzados en inteligencia artificial. Su diseño tiene el propósito de hacer accesible la IA para todo el mundo, facilitando una experiencia de usuario fluida y directa mediante una interfaz sencilla y el uso de lenguaje natural. Esto permite a cualquier usuario interactuar con Copilot de manera sencilla, sin la necesidad de comprender los complejos mecanismos que operan detrás de escena.

✓ ¿Cuánto cuesta Copilot?


La versión Pro para hogares tiene un coste de 22€/mes por usuario.
La versión 365 tiene un precio de 28,10€/mes por usuario.


* Artículo de David González *


David González Ramos

David González Ramos


Consultor freelance en automatización de procesos y tareas en davizgonzalez.com



BIO

Desarrollo soluciones integrales de automatización y business intelligence. En los últimos años, he transformado la eficiencia de multitud de empresas que buscan una nueva manera de trabajar y hacer las cosas.

Correo electrónico: david.gonzalez@bimetrick.com
Web/blog: Blog - David González (davizgonzalez.com)
Linkedin: David González Ramos
Twitter/X: @dgr_bi





25 de marzo de 2024

Refuerza tu seguridad en la nube: cómo gestionar claves de cuenta de servicio en Google Cloud

Google Cloud Icon
A partir del 16 de junio de 2024, Google Cloud implementará cambios en las políticas de organización con el objetivo de reforzar la seguridad y la protección de los usuarios en línea. Estas modificaciones se suman a los esfuerzos continuos de Google por ofrecer un entorno digital más confiable y resiliente.


¿Qué novedades hay?


Ahora, los administradores de la organización tendrán el poder de decidir cómo responderá Google Cloud en caso de que una clave de cuenta de servicio privada se exponga públicamente.

¿Cómo se va a conseguir?


Con sus integraciones estrella, como el programa de análisis de GitHub, que permiten identificar cualquier exposición de claves de cuenta de servicio privadas.

¿Qué implica todo esto para ti?


Es fundamental recordar que las claves de cuentas de servicio deben mantenerse privadas en todo momento. Cuando estas claves se exponen, se podrían producir brechas de seguridad que afectarían la integridad de la infraestructura de Google Cloud.

Los agentes malintencionados podrían usar esas claves para acceder, modificar o incluso eliminar datos, además de consumir recursos valiosos. Los ingenieros de Google se preocupan profundamente por tu seguridad y la de tu organización, y es por eso que están tomando medidas proactivas para salvaguardar tu entorno.

Estas nuevas políticas de organización entrarán en acción a partir del 16 de junio del 2024. Para fortalecer la seguridad de tu entorno, todas las claves de cuenta de servicio que hayan sido expuestas públicamente y de las que se tenga conocimiento serán deshabilitadas de forma proactiva. Esto afectará cualquier uso de estas claves expuestas.

¿Qué puedes hacer tú al respecto?


Estas son las opciones disponibles y deberás tomar la decisión que mejor se ajuste a sus necesidades:

  • Aceptar el cambio de inmediato: para hacerlo, asigna la restricción IAM.serviceAccountKeyExposureResponse al valor DISABLE_KEY. Esta medida de protección se activará de inmediato.

  • Optar por esperar: asigna la restricción IAM.serviceAccountKeyExposureResponse al valor WAIT_FOR_ABUSE si prefieres no habilitar el cambio en este momento. Esta medida de protección permanecerá inactiva hasta que decidas activarla.

  • Relajarte y dejar que Google lo maneje: si decides no hacer nada, no te preocupes. Google activará la medida de protección por ti el 16 de junio del 2024.

Sabemos que cualquier cambio puede requerir un poco de planificación, pero estas medidas se han diseñado para mejorar la seguridad de sus entornos, que sigue siendo una de las principales prioridades en Google Cloud.


Pantalla de proyector de hologramas con tecnología de sistema en la nube
Imagen de rawpixel.com en Freepik





11 de marzo de 2024

Estrategias para crear contraseñas irrompibles en la web y proteger tu identidad online

Password icon
La seguridad de nuestras contraseñas y la protección de nuestra información personal son pilares fundamentales para salvaguardar nuestra privacidad. En un mundo donde la conexión en línea es la norma y los datos personales son un activo valioso, la creación de contraseñas seguras se ha convertido en una tarea esencial para cualquier usuario consciente de su seguridad en la web.


Desde la elección de combinaciones complejas de caracteres hasta la implementación de medidas avanzadas de autenticación, el arte de proteger nuestras cuentas y datos ha evolucionado con la misma rapidez que las amenazas cibernéticas.

Este artículo ofrecerá estrategias innovadoras y consejos prácticos para crear contraseñas que desafíen incluso a los más astutos ciberdelincuentes.

✓ Longitud mínima y complejidad


La longitud y complejidad de una contraseña son elementos cruciales para su seguridad. Contraseñas cortas son vulnerables a ataques de fuerza bruta, donde un atacante prueba todas las combinaciones posibles de caracteres para encontrar la correcta.

  • Para establecer una contraseña segura se recomiendan al menos 12 caracteres. Cuantos más caracteres, mejor.
  • Combina letras tanto en minúsculas como en mayúsculas, números y caracteres especiales (@,!,#,$,% ...) para incrementar la complejidad y fortalecerla contra posibles ataques.
  • Ejemplo de contraseña débil: abc123.
  • Ejemplo de contraseña segura: P@ssw0rd!3#6$4/9.8.

✓ No uses datos personales


Las contraseñas no deben contener información personal fácilmente accesible o relacionada contigo, como nombres, fechas de nacimiento, o datos familiares.

  • Los ciberdelincuentes pueden obtener esta información de redes sociales, registros públicos o datos filtrados en brechas de seguridad.
  • Evita palabras obvias y secuencias numéricas predecibles.
  • Ejemplo de contraseña insegura: Maria1985!.

✓ Frase memorable o acertijos


Otra técnica efectiva es crear una frase memorable y modificarla con números y caracteres especiales.

  • Las frases largas pueden ser más fáciles de recordar para ti, pero difíciles de adivinar para un agente malintencionado.
  • Modifica la frase con reemplazos de letras por números, símbolos o combinaciones alfanuméricas.
  • Ejemplo de frase: "La música es vida y alegría".
  • Ejemplo de contraseña segura:
    L@Mus1c4EsV!d@&Al3gr1@.

✓ Contraseñas únicas


Reutilizar contraseñas es peligroso, ya que si una contraseña es comprometida en un sitio, un atacante podría acceder a otras cuentas.

  • Utiliza una contraseña única para cada cuenta o servicio en línea.
  • Considera el uso de un administrador de contraseñas para generar y almacenar contraseñas de forma segura.
  • Ejemplo: usar "P@ssw0rd!23" para todas las cuentas aumenta el riesgo de que todas ellas sean comprometidas si una sola lo está.

Gestores de contraseñas populares:

Gratuitos:
  1. Bitwarden: open-source, sin límite de dispositivos, sincronización en la nube.
  2. KeePass: open-source, mayor control sobre la seguridad, requiere configuración manual.
  3. NordPass: bóveda segura para archivos, VPN integrada (versión premium).
De pago:
  1. 1Password: interfaz intuitiva, integración multiplataforma, almacenamiento de documentos.
  2. LastPass: amplia compatibilidad con navegadores, compartir contraseñas de forma segura.
  3. Dashlane: monitorización de la web oscura, autocompletar formularios, VPN integrada.


Log in Secured Access Verify Identity Password Concept


✓ Cambio regurlar


Cambiar las contraseñas con regularidad reduce el tiempo durante el cual una contraseña comprometida puede ser explotada.

  • La frecuencia de cambio depende del nivel de sensibilidad de la cuenta y la información que protege.
  • Cambia tu contraseña después de eventos importantes como pérdida de dispositivos, sospechas de compromiso o brechas de seguridad.
  • Por ejemplo, cambia las contraseñas cada 3 meses, o después de eventos como la divulgación pública de una base de datos.

✓ Autenticación de dos factores (2FA)


2FA añade una capa adicional de protección al requerir un segundo método de verificación además de la contraseña.

  • A menudo utiliza algo que el usuario sabe (contraseña) y algo que el usuario posee (teléfono, aplicación de autenticación, llave física).
  • El código de 2FA es temporal y único, lo que hace que el acceso sea más seguro.
  • Por ejemplo, puedes utilizar una aplicación de autenticación como Google Authenticator o recibir un código por mensaje de texto.

✓ Verificación de vulnerabilidades


Utiliza servicios como Have I Been Pwned para verificar si tus contraseñas han sido comprometidas en brechas de datos.

  • Estas herramientas comprueban si tus contraseñas han sido filtradas en bases de datos de contraseñas comprometidas.
  • Pueden ayudarte a saber si necesitas cambiar una contraseña comprometida. Por ejemplo, introducir una dirección de email en el sitio web para ver si ha sido incluida en bases de datos de contraseñas comprometidas.

✓ Concienciación sobre Phishing


Capacitar a los usuarios para reconocer correos electrónicos y sitios web de phishing que intentan robar información de inicio de sesión.

  • Phishing es una de las tácticas más comunes y exitosas de los ciberdelincuentes.
  • Los correos electrónicos de phishing a menudo parecen provenir de fuentes legítimas y solicitan información confidencial.

✓ Actualización constante


Mantén tu sistema operativo, navegadores y aplicaciones actualizados para evitar vulnerabilidades conocidas.

  • Frecuentemente, los ciberdelincuentes aprovechan las debilidades en el software que no ha sido actualizado.
  • Utiliza herramientas de seguridad como firewalls y antivirus.
  • Instala parches de seguridad, actualiza firmware de routers, y utiliza redes privadas virtuales (VPN) en redes públicas.


Al seguir estas recomendaciones, los usuarios pueden fortalecer la seguridad de sus contraseñas y proteger sus cuentas y datos personales en línea. Cada medida, desde la elección de contraseñas sólidas hasta la implementación de 2FA y la vigilancia activa, contribuye a una postura de seguridad más robusta en el mundo digital de hoy en día. Recuerda que la seguridad en línea es un esfuerzo continuo que requiere atención y acción constante.



22 de febrero de 2024

Desbloqueando la IA: Google introduce Gemma, un modelo de código abierto para todos

Google Gemma
Google da un giro hacia la universalización de la inteligencia artificial (IA) con el lanzamiento de Gemma, un modelo de lenguaje de código abierto de dimensiones significativas. Ahora, desarrolladores, investigadores y amantes de la IA pueden explorar un universo de posibilidades sin restricciones, invitados a crear el futuro de la tecnología.


Esta iniciativa busca democratizar el acceso a la inteligencia artificial a través de la liberación de dos modelos de lenguaje de gran tamaño (LLM) de código abierto: Gemma 2B y Gemma 7B.

Los modelos Gemma han sido diseñados sobre la base técnica y de infraestructura de Gemini, el más grande y potente disponible hoy en día, permitiendo que tanto Gemma 2B como 7B (la letra B representa los 'Billones' de parámetros de configuración) alcancen un rendimiento excepcional para su tamaño, superando a otros modelos de código abierto como Llama-2 (la IA de código abierto de Meta).

La distinción clave entre Gemma y Gemini radica en su enfoque: Gemma está dirigido principalmente a desarrolladores, mientras que Gemini está orientado a satisfacer las necesidades del consumidor final.

Además, estos modelos pueden ejecutarse directamente en un portátil u ordenador de sobremesa de cualquier desarrollador, lo que permite capacidades de IA ampliamente accesibles.

Lo más destacado es que, a pesar de su tamaño, Gemma supera a modelos considerablemente más grandes en benchmarks (comparativas de rendimiento) clave, manteniendo altos estándares de seguridad y responsabilidad en sus resultados.


Workers using ai computing simulation


Características principales


✓ Código abierto


Los desarrolladores de todo el mundo pueden acceder y modificar libremente el código de los modelos, lo que permite una mayor transparencia, colaboración e innovación en el campo de la IA.

✓ Escalabilidad


Los modelos Gemma se pueden ejecutar en una amplia gama de dispositivos, desde potentes servidores en la nube hasta dispositivos móviles de bajo consumo, lo que los hace accesibles para una gran variedad de proyectos.

✓ Eficiencia


Los modelos están optimizados para un uso eficiente de la energía y la memoria, lo que los hace más sostenibles y económicos.

✓ Responsabilidad


Google ha puesto a disposición un kit de herramientas de IA responsable que ayuda a los desarrolladores a crear aplicaciones éticas y seguras.

El kit de herramientas incluye:

  • Clasificación de seguridad avanzada: proporciona una metodología única que permite construir clasificadores de seguridad robustos con pocos ejemplos, asegurando la protección de las aplicaciones y usuarios.

  • Herramientas de depuración intuitivas: con esta herramienta de depuración de modelos, podrás investigar fácilmente el comportamiento de Gemma, identificar posibles problemas y solucionarlos rápidamente.

  • Guía de buenas prácticas: accede a las mejores prácticas en el desarrollo e implementación de grandes modelos de lenguaje.


Apoyo para investigación y desarrollo:


Gemma está pensada para la comunidad de desarrolladores e investigadores que impulsan la innovación en inteligencia artificial.

  • Acceso gratuito en Kaggle: inicia tu proyecto con Gemma sin coste alguno utilizando el acceso gratuito en la plataforma Kaggle.

  • Capa gratuita para notebooks Colab: utiliza los recursos sin restricciones con la capa gratuita de Gemma en Colab Notebooks.

  • $300 en créditos para Google Cloud: como nuevo usuario de Google Cloud, recibirás $300 en créditos para comenzar tus proyectos con Gemma.

  • Créditos para investigadores: los investigadores pueden solicitar créditos de hasta $500,000 en Google Cloud para acelerar aún más sus investigaciones con Gemma.








11 de febrero de 2024

El futuro de la Inteligencia Artificial en la creación de contenido para el Marketing Digital

Marketing Digital
La Inteligencia Artificial (IA) está cambiando la forma en que las marcas y los influencers interactúan con su público. A medida que nos adentramos en el 2024, esta revolución promete intensificarse. En este artículo, profundizaremos en las tendencias y novedades más recientes de la inteligencia artificial en la creación de contenido para el marketing digital.


Además, exploraremos cómo la IA está siendo aprovechada por los influencers para potenciar su alcance y compromiso con sus seguidores. Estamos ante un emocionante horizonte donde la colaboración entre la IA y los creadores de contenido está desencadenando nuevas formas de expresión y compromiso en las plataformas digitales.


Free photo map lying on wooden table


Transformaciones en el marketing digital para este 2024


✓ Generación de contenido automatizado


Una de las principales evoluciones en la IA para el año 2024 es la generación automatizada de contenido. Cada vez más empresas están adoptando algoritmos y modelos de IA para producir rápidamente contenido sin agotar sus recursos.
Herramientas como Synthesia, FlexClip o CopySmith pueden generar artículos, vídeos, descripciones de productos y otros tipos de contenido de manera automatizada, permitiendo a las empresas ahorrar tiempo y recursos en su creación.

✓ Personalización del contenido


Una de las tendencias más significativas es la personalización del contenido. Gracias a la IA, las empresas pueden adaptar el contenido según las necesidades y preferencias de su audiencia. Mediante el análisis de los seguidores y la audiencia potencial, los sistemas de IA pueden identificar los comportamientos de los usuarios de cada red social y ofrecer contenido altamente relevante y personalizado. Todo ello no solo mejora la experiencia del espectador, sino que también aumenta las conversiones de ventas para los negocios online.

✓ Optimización del SEO


La IA también juega un papel fundamental en la optimización SEO. Motores de búsqueda, como Google o Bing, escanean el contenido para clasificar y mostrar los resultados de búsqueda más relevantes para los usuarios, simplificando los aspectos técnicos del SEO. Herramientas como SurferSEO facilitarán aún más esta tarea. La IA puede acelerar este proceso al analizar grandes volúmenes de datos en segundos y ofrecer valiosas recomendaciones para mejorar el posicionamiento de tu contenido.


Free photo homepage concept with search bar


Ética y desafíos de la IA en la creación de contenido


Sin embargo, no todo son buenas noticias; la IA también presenta desafíos importantes que deben abordarse, tales como:

  • Transparencia y responsabilidad.

  • Calidad y veracidad del contenido.

  • Privacidad y protección de datos.

  • Sesgos y discriminación.


Es esencial emplear las herramientas de manera ética y asumir la responsabilidad por el contenido que generamos y consumimos. Aprovechar estas herramientas es fundamental para garantizar la calidad de nuestro contenido. No obstante, es importante recordar que no existen atajos en este proceso y a media que avancen las herramientas y algoritmos de inteligencia artificial, también avanzaran las herramientas de detección de plagio y de promoción de contenido original.

La IA aplicada al marketing digital en 2024


✓ Proyecciones sobre el uso de la IA en campañas publicitarias


Las marcas que opten por usar IA en sus campañas publicitarias en el 2024 disfrutarán de ventajas únicas. Podrán crear contenido a una velocidad y escala sin precedentes, ofrecer experiencias de usuario más personalizadas y mejor segmentadas, lo que mejorará sus conversiones al aplicar estrategias específicas a su audiencia. Además, podrán optimizar sus tácticas de márketing utilizando análisis de datos en tiempo real.

✓ Aplicación de algoritmos de IA en edición y animación


Empresas de diseño gráfico y edición de imágenes líderes, como Linearity o Canva emplean algoritmos para simplificar el diseño gráfico, permitiendo a los usuarios elaborar publicaciones específicas para cada plataforma y crear logos o plantillas adaptadas a las necesidades del cliente. A través del algoritmo de recomendación y generación automática de diseños basado en sus usuarios, se logra un proceso creativo mucho más ágil, divertido y sencillo.

✓ Expectativas de los influencers frente al papel de la IA en la creación de contenido


Los creadores de contenido también son parte integral del ecosistema del marketing digital. A medida que la IA se vuelve más sofisticada y fácilmente disponible, surgen preocupaciones sobre cómo podría afectar la generación de contenido, potencialmente desplazando estrategias antiguas por otras más relevantes para la audiencia, relegando a los influencers a un papel secundario. Sin embargo, en lugar de reemplazarles, la IA puede potenciar sus habilidades, aumentando la cantidad y calidad del contenido y ayudándoles a crear perfiles más impactantes y atractivos.


Female fashion blogger streaming at home with smartphone and subscribe word


La IA al alcance de tu mano


No necesitas ser un experto ni un ingeniero informático para empezar a utilizar estas herramientas, muchas de las cuales son gratuitas o tienen versiones de prueba. Descubrirás lo sencillo que es y el impacto positivo que puede tener en ti o en tu empresa.
Hoy en día, hay herramientas de IA para casi todos los procesos de creación de contenido, así que puedes beneficiarte de alguna manera, ahorrando tiempo, dinero o ambos.
YouTube y Google son recursos accesibles donde encontrar información específica sobre estas herramientas.

Conclusión


En resumen, la Inteligencia Artificial continuará siendo una fuerza transformadora en la industria del marketing digital en el año 2024. Desde la generación automatizada de contenido hasta la personalización mensajes y la optimización del SEO, son solo algunas de las tendencias que podemos anticipar en los próximos años.

Aquellas empresas que adopten estas tecnologías y aprovechen al máximo sus capacidades estarán en una posición privilegiada para destacar en un mercado cada vez más competitivo.

** Artículo escrito por Javier Ezponda **





27 de enero de 2024

Lumiere: la inteligencia artificial que convierte texto en asombrosos videos realistas

Lumiere
Lumiere es un modelo de difusión espacio-temporal para la generación de vídeo, lo que significa que utiliza un modelo de aprendizaje automático para generar vídeos a partir de una descripción en texto. La tecnología de difusión es un enfoque relativamente nuevo para la generación de imágenes y vídeos.


Los modelos de IA tradicionales que convierten texto en vídeos suelen crear vídeos cortos, de unos pocos segundos de duración, generando fotogramas individuales e interpolándolos para formar una secuencia de vídeo.

Sin embargo, Lumiere utiliza un enfoque de muestreo espacial y temporal conjunto, que se traduce en que el modelo genera todos los fotogramas de un vídeo a la vez. Esto permite al modelo generar vídeos más fluidos y naturales, y de mayor duración y calidad que los vídeos generados por los modelos tradicionales.


Lumiere Model


¿Qué aplicaciones tiene?


El potencial de Lumiere es considerable. Podría utilizarse para crear nuevos tipos de contenidos de vídeo, como películas, programas de televisión y videojuegos. También podría utilizarse para mejorar la experiencia de la realidad virtual.

Algunos ejemplos de cómo podría utilizarse Lumiere:

✓ Películas y programas de televisión de alta calidad


- una productora de cine podría utilizar esta tecnología para crear una escena de acción épica que sea más realista y emocionante que cualquier cosa que se haya hecho antes.

✓ Videojuegos más inmersivos y envolventes


- un desarrollador de videojuegos podría utilizar Lumiere para crear mundos virtuales que sean más detallados y atractivos que nunca.

✓ Enfoques innovadores para educación y capacitación


- un profesor podría utilizar Lumiere para crear simulaciones que ayuden a los estudiantes a comprender conceptos complejos.

✓ Nuevas formas de publicidad y marketing


- una empresa podría utilizar Lumiere para crear anuncios que sean más atractivos y memorables.





Algunos detalles sobre el proyecto Lumiere


  • El proyecto está dirigido por un equipo de investigadores de Google AI, encabezados por el Dr. Quoc V. Le.

  • Lumiere se basa en un modelo de difusión espacio-temporal llamado Space-Time-U-Net (STUNet).

  • El modelo está entrenado en un conjunto de datos de imágenes y vídeos:

    - el modelo de difusión espacio-temporal está compuesto por 137 mil millones de parámetros, está entrenado en un conjunto de datos de 1500 millones de imágenes y vídeos y puede generar vídeos de hasta 100 fotogramas de duración.

  • Lumiere todavía está en fase desarrollo, pero ha demostrado ser capaz de generar vídeos de alta calidad.


Reflexiones


Es un proyecto de investigación de Google AI que aún está en sus primeras etapas de desarrollo y, como consecuencia, tiene algunas limitaciones. Por ejemplo, puede generar vídeos que son demasiado artificiales o que no concuerdan con la descripción textual.

El equipo de investigación está trabajando para superar estas limitaciones. Están utilizando técnicas de aprendizaje automático para mejorar la calidad de los vídeos generados y para hacerlos más coherentes con la descripción en texto.

Lumiere es una tecnología prometedora con el potencial de cambiar la forma en que creamos y consumimos vídeos. Con el desarrollo continuo de la tecnología, podría convertirse en una herramienta poderosa que tenga un impacto significativo en la industria del entretenimiento y la tecnología.